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The Optimal Algorithm to Evaluate x" 
Using Elementary Multiplication Methods 

By D. P. McCarthy 

Abstract. The optimality of the binary algorithm to evaluate xn is established where 

x is an integer or a completely dense polynomial modulo m, n is a positive integer, 

and the multiplications are done using a simple improvement on the naive algorithm. 

Introduction. The problem of finding the cheapest way to evaluate xn has been 

considered by D. E. Knuth in [1] where, subject to the assumption that the cost of 
multiplying xi by xi is independent of x, i or j, he shows that the problem reduces to 
that of finding the shortest addition chain for n and discusses this problem at length. 
There is no known simple solution, but several algorithms are described that generate 
chains that are reasonably close to the shortest for moderate values of n. 

W. M. Gentleman made a further contribution to the subject in [2] by showing 
that if x is a sparse polynomial and n is large enough then the cheapest way to eval- 
uate xn will eventually be by repeated multiplication by x. The difference between 
Knuth's and Gentleman's results is due to the fact that if i and j are large and x is 
sparse with n + 1 terms, then the multiplication of xi * xi has a cost in proportion to 
(ij)nf. 

The purpose of this paper is to examine the particular case when the cost of 
multiplying xi by xi is proportional to ij; such a model applies to integers and dense 
polynomials modulo m. 

Cost of Multiplication. We evaluate the cost of multiplying xi by xi using the 
principles outlined in [1] , namely an enumeration of the number of primitive operations 
to be done. 

We observe first of all that the only difference between integer and completely 
dense polynomial multiplication modulo m is that the carry is omitted in the latter 
case. If x is a p digit number then x2 has 2p digits and xi has ip digits, and the cost 
of multiplying xi by xi using the elementary algorithm is proportional to the number 
of digit by digit multiplications, that is ijp2. If however i = j, then there is com- 
plete symmetry in the two arguments and only half the digit-by-digit multiplications 
are required, that is, V/2ijp2. 

If C(el, .. . , er: hi, . . , h) is the cost of evaluating expressions e1 to er 

given the expressions h1 to he and if we normalize p2 to 1, then we may write 
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(1) C(xi * xi: xi, xi) = (24 i :s) 

The Binary Algorithm. The binary representation of the number n may be used 

to generate short addition chains for n and hence an evaluation of xn needing relatively 

few multiplications; an algorithm exploiting this is given in [1, p. 399] and called the 

binary algorithm and the example n = 15 used to prove that the algorithm does not 

lead to the shortest multiplication chain for x15. The following recursive version of 

the algorithm assumes a special squaring algorithm sq(x) = x2 which avails of the 

symmetry to reduce by half the number of digit-by-digit multiplications required. It 

has the further advantage of requiring a single right to left scan of the binary repre- 

sentation of n. 

(2) 
n 1\eve 

() bexp (x nY=Q (bx( P (X2i)) - 1)) een 

sq xp, n odd 

Notation. We define Cb(xn) = C(bexp (x, n): x) and C(e1, . . . , er: h1,..., hs) 
as the cost of the cheapest possible evaluation of e1, . . . , er given h1, . . ., hs. In 

particular, C(xn) = C(xn: x) is the cost of the cheapest possible evaluation of xn 

using the multiplication algorithm outlined above. Finally, the sequence 1 =bo, 

bn = n is the addition chain defined by the binary algorithm for n. 

THEOREM. For all n > 0 and x such that (1) above holds we have 

(3) C(xn) = Cb(xn) 

and bon, . . , bn is uniquely the cheapest chain for Xn. 

To prove this we need the result that for all 0 < m < n, 

(4) C(xn) - C(xn-m) < 2mn - m (m + 1). 

Since 

Xn = X o X . .O.X . Xn m, 

m times 

then 

C(xn) < C(xn-m) + 2 {1 (n - m) + I (n -m + l) + + I (n - 1)} 

and hence the result (4). 
Next it may readily be shown that C(xn) = Cb(xn) for n = 1, 2, 3, 4 and that 

the addition chain defined by bexp(x, n) is uniquely the cheapest; therefore, we 
commence by assuming 

(5) C(xi) = Cb(xi), 1 ?i p-1, 

and 
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1=b,. .., b = i is unique for 1 i < p -1. 

Next we deny the theorem by assuming that there exists an addition chain ao,...,ar + 

HO ... , bSP which is cheaper or as cheap as that defined by bexp(x, n). That is if 

Ca(XP) is the cost of evaluating xP using the chain A, we have 

(6) Ca(xp) = C(xP) S Cb(xp); 

and clearly, we must have ari 0 bSP otherwise A would point to a cheaper method 
to evaluate x 1 or a nonunique chain for xarl in contradiction of (5). We have then 

C(xp) C(Xar * x r-1 ar-1 XP ar-l) ? C( ar- P-ar1. 

and since for all possible ar-1, p - ar-1 < ar-.. 

C(x_) > C(Xar-l p ar-1. xar-1 xPar-1) + C(xar x); 

and this with (5) and (6) implies 

(7) Cbx~) > C(Xar-1 xPar-1: Xar-1 XP r-1) + Cb(X rl)- 

We now consider separately the four possibilities that p and ar-I be, respectively, odd 
or even. 

Let p = 2n + a and p - ari1 = 2m + b where n > m > O and a, b e {O, 1} so 
that ar-1 = 2(n - m) + (a - b) = 2j + c where j>0 and c e {-1, 0, ? 1} where- 

upon 

(8) Cb(xP) = Cb(X2n+a) = n2 + 4an + Cb(xn), 

(9) C( ar-1 XP-ar-i Xar-l xP-ar-1) = 2(2j + c)(2m + b), 

Cb(X ar-1) Cb(x2j+) 

= + Cb(X ), C = O 

?j2 +4j + Cb(x'), C = 

\(j - 1)2 + 4(; - 1) + Cb(Xi -1), c =-1 

By (4) Cb(xi) < Cb(x' 1) + 2(j - 1) so 

? 
+ Cb(X'), C = 0 

Cb(Xar-1) > ( j2 + 4j + Cb(x') C = 1 

i2 -1 + Cb(X'), C =- 

(10) Cb(Xr 1) >1 2 + Cb (Xj) + f(c), 

where f(0) = 0,f (1) = 41j, f(- 1) = - 1. 
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Furthermore, for all a, b E {0, 1} we have 

(l ?<m < 
2n +a-2b 

which implies at least 0 < m S n/2. 

We substitute (8), (9), (10) into (7) to obtain 

n2 + 4an + Cb(xn) > 2(2j + c)(2m + b) + j2 + Cb (x) + f(c) 

so 

Cb(xn) - Cb(xi) > 2(2j + c)(2m + b) + j2 + f(c) - n2 - 4an. 

By (4), 

2mn - m2 - m > 2(2j + c)(2m + b) + j2 + f(c) - n2 - 4an. 

Then letting j = n - m, c = a - b and regrouping we get 

(12) 6m2 + (8b - 4a - 1)m - 2bc -f(c) > 4mn + 4(b - a)n. 

We next evaluate (12) for all a, b E {O, 1} to examine the four cases. 

(1) a = b = 0 implies c = 0 and f(0) = 0 yielding 

6m2 - m > 4mn; 

and since m > O0 

(13) m > 2n/3 + 1/6. 

(2) a = 0, b = 1 implies c = -1 and f(- 1) = -1 yielding 

6m2 + 7m + 3 > 4mn + 4n, 

but 9m > 7m for all m > 0 so that we get 

(14) 6m2 + 9m + 3 > 4n(m + 1), 6m + 3 > 4n, m > 2n - 
3 2 

(3) a = 1, b = O implies c = 1 and f(l) = 4n - 4m yielding 

(15) 6m2 - m > 4mn, m > 2n + - 
3 6 

(4) a = b = 1 implies c = 0 and f(0) = 0 yielding 

(16) 6m2+3m>4mn, m> 2n 1 

The results (13), (14), (15), (16) all contradict the constraint (11) and show exhaustively 

that the assumption that there exists another chain different from bHO . . ., bS = p 

such that Ca(XP) < Cb(xP) leads to a contradiction about ar,-. Thus we have C(xP) = 

Cb(xP) for all p, and the addition chain bP, ..., bP defines uniquely the cheapest 

multiplication chain to generate xP. 

Completely Naive Multiplication. Since it does not always prove convenient to 

write a special squaring algorithm, it is important to consider the case where no 
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advantage is taken of the symmetry in the product xi * xi so that it has cost relative 
to (1) of 

C(xi * xi: xi, xi) = 2ij for all i & j; 

and we shall use C(xn) to denote the cost of xn evaluated in this way. Examination 
of the 69, 169 possible chains for xn', 1 < n ? 20 shows that 

(17) C(xn) = Cb(xn), 1 < n - 20, 

but a proof for all n has yet to emerge. If, as seems probable, (17) is true for all n, it 
will still lack the uniqueness of (5) since 

C (x (xn * xn): xn x)=C(xn(xn * x): xn, x) = 2n2 + 4n, 

so that for any odd n there will be at least two different chains costing the same. An 
example will serve to highlight the contrast between the uniqueness of Cb(Xl 5) = 

C(x1 5) and the nonuniqueness of Cb(x1 5)C(x15) and also the shortest chains for 
n = 15. 

bexp (x, 15) yields the chain (1, 2, 3, 6, 7, 14, 15) with cost C(x15) = 103 and 
C(x15) =162. However, the chains (1, 2, 3, 6, 7, 8, 15), (1, 2, 3, 4, 7, 14, 15), 
(1, 2, 3, 4, 7, 8, 15) also all have the cost C(x15)= 162 while the four shortest 
possible chains for 15,S1 = (1, 2, 3, 5, 10, 15), S2 = (1, 2, 3, 6, 9, 15), S3 = 

(1, 2, 3, 6, 12, 15), S4 = (1, 2, 4, 5, 10, 15) have cost C(Sj) = 142, C(S2) = 158, 

C(S3) = 122, C(S4) = 138 and C(S1) = C(S2) = C(S3) = C(S4) = 168. It is seen 

that though requiring one less multiplication the cheapest of the shortest chains is 
approximately 20% dearer than the cheapest chain. 

Incidental Results. (1) Bounds on C(xn). Examination of the case n = 2' shows 

(18) C(xn) = - 1n 
3 

whereas n = 2' - 1 yields 

n2 + 8n - 91og2 (n + 1) 
(19) C(xn) = 3 

Since these represent the best and worst cases, we have bounds on C(xn) 

n2-1 C( ) n2 + 8n - 91og2 (n +1) 
3 -Zt <3 

From this we may observe that, assuming it costs 2n to divide xn by x, it will never 
be cheaper to obtain x2 1 by dividing X2 i by x since 

C(xn .x) - C(xn-) =n - 1 (n - 1)2 + 8(n - 1) - 91og2n 

= 31og2n + 2 >0 for alln = 2i. 

(2) Comparison with Repeated Multiplication by x. We may contrast the 
bounds (18) and (19) with C*(Xn), the cost of evaluation of xn by repeated multi- 
plication by x. We have 
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n-1 

C*(Xn) 1 1? + 2 A j for all n > l 
j=2 

- n2 - n - 1 

so for large n both C*(Xn) and C(xn) are both O(n2). 
(3) Space Requirements. Lastly, we note that if the squaring and multiplication 

algorithms do not destroy their arguments until completion of the operation and they 

can doubly reference their arguments, then the space required by the binary algorithm 

to evaluate xn, denoted by Sb(xn), is given by 

/3n\ 
2 n even 

Sb (xn)- = 

n, n odd/ 

and this is clearly minimal. 

Conclusion. The importance of the above theorem is that it assures us that, for 

integer and dense polynomial multiplication modulo m using a naive algorithm, the 

simple binary algorithm is the best one to use despite the fact that it sometimes takes 

more multiplication steps than other algorithms. 
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